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Communicating using filtered synchronized chaotic signals.

T. L. Carroll

Abstract- The principles of synchronization of chaotic systems are extended to the

case where the drive signal is filtered. A feedback loop in the response system with an

identical filter is used to reconstruct the original drive signal, allowing synchronization. A

simple parameter switching scheme is used to send information from a drive circuit to a

receiver. It is also possible to add a chaotic signal with very similar frequency

characteristics and still detect information encoded in the original chaotic carrier (but not

the added chaotic signal), demonstrating the possibility of adding and separating multiple

chaotic carriers with similar frequency characteristics.
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I. Introduction

Two chaotic circuits may be synchronized by driving a subsystem of a chaotic

circuit with a signal from the full circuit. [1-7]. The chaotic subsystems may be cascaded

so that the driving signal is reproduced, giving a test for whether or not the chaotic

systems are synchronized [4, 8]. Others have shown how this work may be applied in

simple communications systems [9-12] or non autonomous (periodically forced) chaotic

systems [13]. One advantage of synchronizing non autonomous chaotic systems is that

the periodic forcing terms for the two chaotic systems may be synchronized even when a

large amount of noise or chaos is added to the driving signal.    Synchronization may be

even be achieved when the driving signal has been altered by a filter [14], as long as the

original driving signal is reconstructed at the receiver. In this work, this filtered

synchronization technique is used to separate a chaotic signal carrying information from a

contaminating signal. It is shown that a receiver may be built that is only sensitive to the

information carrier, rejecting the contaminating signal, even when it is another

information-carrying chaotic signal. This raises the possibility of using multiple chaotic

signals as broad-band carrier signals which occupy the same part of frequency space.

II. Theory of Synchronization

The theory of the synchronization of chaotic systems is described in detail

elsewhere [2], so only a brief description is included here. We begin with a dynamical

system that may be described by the ordinary differential equation

u t  = f u (1)

The system is then divided into two subsystems, u= (v,w);

v = g(v,w)
w = h(v,w)                                                           (2)
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where v=(u1,...,um), g=(f1(u),...,fm(u)), w=(um+1,...,un), and h=(fm+1(u),...,fn(u)). The

division is truly arbitrary since the reordering of the ui variables before assigning them to

v, w, g, and h is allowed.

A first response system may be created by duplicating a new sub-system w’ identical to

the w system, substituting the set of variables v for the corresponding v’ in the function h,

and augmenting Eqs. (2) with this new system, giving,

v = g(v,w)
w = h(v,w)

w’ = h(v,w’).                                                          (3)

If all the Lyapunov exponents of the w' system (as it is driven) are less than zero, then w'
- w → 0 as t → ∞ .

It is possible to take this system further. One may also reproduce the v subsystem and

drive it with the w' variable [4], giving

    

v = g(v,w)
w = h(v,w)

w’ = h(v,w’)
v'' = g v'', w'

                                                      (4)

 If all the Lyapunov exponents of the w', v'' subsystem are less than 0, then v'' → v as t →

∞. The example of eq. (4) is referred to as cascaded synchronization [8].

III. Filtering and synchronization

 It is possible for chaotic circuits to produce signals which have large components

at certain frequencies or other distinct spectral properties. This is especially true for non

autonomous chaotic circuits [13].  The periodic peaks in the spectrum of the chaotic

signal may be removed by a filter, but this alters the chaotic signal enough so that

synchronization in the receiver does not occur. The periodic peaks also are a feature

which could be used to detect the chaotic signal, which may not be desirable. Finally, if

one could filter several chaotic signals to remove features that they had in common, it

might be possible to add them together and later separate them based on their differences.
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A basic scheme by which a filtered chaotic signal could be reconstructed was

demonstrated in [14]. In this work, a set of band stop filters were used to remove the

forcing frequency and the first four harmonics from a chaotic driving signal produced by

a non autonomous chaotic circuit.  The general filtering arrangement is shown in Fig. 1;

to effect a band stop filter, the chaotic driving signal is first sent through a bandpass filter.

The signal within this pass band is then subtracted from the chaotic driving signal and

transmitted. To reconstruct the driving signal, the output of the response circuit is sent

through a filter identical to the first bandpass filter. The filter output is added to the

transmitted signal to produce a reconstructed driving signal, which is used to drive the

response circuit. The response circuit will synchronize to the drive circuit if the feedback

arrangement for the response circuit is stable in the synchronized state. These general

concepts are not limited to band stop filters, although each combination of chaotic circuit

and filter must be checked for stability.

The circuit used in [14] may be used to demonstrate a simple communications

system using filtered synchronization. The basic chaotic circuit from [13] is known as the

augmented Duffing ( ADF) circuit. The ADF circuit is used with the band stop filters

shown in Fig. 2, as well as an intermediate circuit to add in noise or another chaotic

signal as a contaminating signal. The signal x first passes through a 2nd order band pass

filter [15] and the filter output is then subtracted from the x signal to produce a driving

signal xt with a particular band of frequencies suppressed. Five bandpass filters were

used, one at the driving frequency of 780 Hz and one at each of the first 4 harmonics. The

forcing signal was subtracted from the x signal before filtering to further attenuate the

component of the xt signal at the forcing frequency. The equations for the drive, response

and band pass filter for the ADF circuit were

dx
dt

 = β y - z (5)

dy
dt

 = β -Γyy - g(x) + αcos ωt + φ  + A (6)
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dz
dt

 = β f x  - Γzz (7)

w = 
d x - αcos ωt

dt
(8)

dui
dt

 = -2.0
Ri2C

ui - 1
Ri2C

1
Ri3C

 + 1
Ri1C

vi - 1
Ri1C

w (9)

dvi
dt

 = ui (10)

xt = x + vi
i=1

5

(11)

xd = xt - ri
i=1

5

(12)

dqi

dt
 = -2.0

Ri2C
qi - 1

Ri2C
1

Ri3C
 + 1

Ri1C
ri - 1

Ri1C
dx''

dt
(13)

dri
dt

 = qi (14)

dz'
dt

 = β f xd  - Γzz' (15)

dx''
dt

 = β y'' - z' (16)

dy''

dt
 = β -Γyy'' - g(x'') + αcos ωrt + φr  + A (17)

Equations (5-7) represent the chaotic driving circuit, eqs. (8-11) represent the drive

system filters, eqs. (12-14) represent the response system filters and eqs. (15-17)

represent the response circuit. The reconstructed driving signal is xd. The variables Rji are

defined for each of the bandpass filters in table I. The actual resistor values were tuned
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with 20 turn potentiometers to adjust for errors in the capacitors. The value of C was 0.01

µF, and A was initially 0.0 V. The Q factor for each band pass filter was 20.

 Figure 3 shows the power spectrum of the transmitted signal from the ADF

circuit, xt. The periodic component at the forcing frequency has been attenuated by about

35 dB. Without filters present, the phase φr of the response forcing must match the phase

φ of the drive circuit forcing for synchronization to take place. A simple controller for

matching phases in non autonomous chaotic circuits was demonstrated in [13].

Numerically, this controller is described by:

∆ = 1
Tc

h xt, x'', t dt (18)

h xt, x'', t  = xt τn   for τn ≤ t < τn+1 (19)

where τn is the n'th time at which x'' crosses zero in the negative direction and Tc,

the controller time constant, is 1 s. The function h( xt, x'', t) is a step wave function

consisting of the value of xt at the last time that x'' crossed zero. The signal ∆ is the

average of this step wave function. If xt is unrelated to x'', then the average signal ∆ will

be zero, and no correction will take place. The error signal ∆ is applied to the frequency

modulation input of the function generator providing the response forcing signal.

IV. Improving synchronization

The setup of eqs. (5-17) is sufficient for demonstrating the principles of

synchronization, but its performance was not good enough for communications. As a

guide to the likely synchronization quality, the Lyapunov exponents for the filtered

system were calculated from eqs. (5-17). In order to keep the number of variables

manageable, only the filter at the fundamental forcing frequency of 780 Hz was used in

the Lyapunov exponent calculations. The largest Lyapunov exponent for the response
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system was found to be -10 s-1, which is much larger than the largest exponent for the

unfiltered response system of -780 s-1. With a global exponent so close to zero, the

response circuit was very sensitive to local instabilities. Local instabilities may not have a

large effect on synchronization unless there is some other nearby attractor that the chaotic

system might be attracted to. The attractor for the ADF circuit did have a two-lobed

structure (Fig. 4). The circuit moved between lobes infrequently (several forcing cycles

usually passed between crossings), so if a local instability put the drive and response

circuits in different lobes of this attractor, they might stay apart for a long time. The two

possible solutions to this problem considered here were reducing the largest response

Lyapunov exponent or reducing the symmetry of the attractor so that it was more one-

sided, causing the local instabilities to have less effect.

One way to change the largest response Lyapunov exponent is to change the Q

factor of the filter. Increasing the damping of the filter by decreasing the Q factor to 2.0

(R1 = 20,300; R2 = 41,900; R3 = 10,260) was the first simulated modification attempted.

This modification increased the largest Lyapunov exponent of the response system to190

s-1, making it unstable. Increasing the Q factor of the filter to 200 dropped the largest

exponent slightly to -16 s-1. These results make sense when one considers that higher Q

filters have a smaller effect on the dynamical system.

Lowering the symmetry of the dynamical system appeared to be an easier way to

improve synchronization. The offset term A in eq. (6) and (17) was set to 1.0 V, resulting

in improved synchronization by making the attractor more one sided. Figure 5 shows the

attractor when the offset was added to the drive. When this offset was simulated in order

to calculate the response Lyapunov exponents, it appeared to make the response system

go unstable. It is not known why the simulation gave different results than the

experiment, although the full filter was not used in the simulation.
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Figure 6 shows the improvement in synchronization when A was set to 1.0 V in

the circuit. Figure 6(a) shows x'' vs. x from the circuit for A=0.0 V, while 6(b) shows x''

vs. x when A=1.0 V.

V. Signal separation and communications

In previous work [13, 14], this controller was used only to lock onto a chaotic

signal, in some cases when noise was present. In this work, this controller is used to

distinguish between signals from different chaotic circuits using a property mentioned

above: if the transmitted signal xt is completely unrelated to the output signal x'', then the

error signal ∆ will be zero, and no correction will take place. For transmitted signals xt

that are not completely different from x'', different results are possible. If, for example,

the chaotic driving circuit is changed only slightly, then there is still a close enough

relation between xt and x'' that ∆ will not be zero. Because of this, ∆ may be used to track

small parameter changes in the driving chaotic circuit. If a contaminating signal from

another chaotic circuit is added to xt, then it is still possible that ∆ will respond to xt as

long as the contaminating signal is not too large and the chaotic system that produces the

contaminating signal is not too similar to the driving chaotic circuit. Although nonlinear

systems are not actually orthogonal, this idea is similar in spirit to orthogonality. The

filtering process helps accentuate the differences between chaotic systems by allowing

the common features to be removed.

Several authors have demonstrated digital communication between cascaded

chaotic circuits via parameter switching in the sending circuit [16-18]. Parameter

switching may also be used with the filtered non autonomous chaotic circuits. The most

likely parameter to be switched would seem to be the phase of the periodic forcing in the

driving system, but the control system of [13] will lock in a stable fashion when the

response forcing is in phase or 180 degrees out of phase with the drive, so phase

switching was not used. The forcing offset A in eq. (6) and (17) was switched between ±

1.0 V, and the parameter switching was detected by monitoring the error signal ∆. Figure
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7 shows the offset signal A as a time series and the resulting error signal coming from the

response system controller. The switching speed is limited by the time constant in eq.

(18), about 1 s for this system.

 To demonstrate signal separation as described above, a second Duffing circuit

with different parameters was built. This second Duffing circuit (the Single Well Duffing

circuit, or SWD circuit) was described by the equations:

dξ
dt

 = 104ψ    (20)

dψ
dt

 = 104 βcos ωt + φ2  + A2 - 0.256ψ - ξ3     (21)

where β was 6.20 V and A2 was 0.5 V. This second Duffing circuit was forced

with an independent periodic forcing source at 780 Hz, so the phase φ2 was not the same

as φ in eq. (6). The ξ signal was filtered with a band stop filter to remove the forcing

frequency and the first 4 harmonics to produce ξt , which was then added to the

transmitted signal xt with the same amplitude as xt. Figure 8 is the power spectrum of the

ξt signal from the SWD circuit. Synchronization of the periodic forcing in the drive and

response systems was not lost when the ξt signal was added to the xt signal with the same

amplitude. Synchronization was lost for larger amplitudes of the ξt signal, but

synchronization did not occur when the ξt signal alone from the SWD circuit was used to

drive the response ADF circuit..

Figure 9 shows the offset signal A and the error signal ∆ when the drive signal is

the sum of xt and ξt. The parameter switching is still detectable in the error signal ∆. In

order to test the ability of this system to separate chaotic communications signals, the

offset parameter A in eq. (6) (the ADF circuit) was held constant at 1.0 V while the offset

parameter A2 in eq. (21) (the SWD circuit) was switched between ± 0.5 V. If all other
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controller parameters were left the same (so that the ADF response was still synchronized

to the ADF drive), this switching signal could not be detected in the error signal ∆.

 If the frequency of the response periodic forcing was set to about 760 Hz, so that

the drive and response were no longer synchronized, the switching signal when the offset

A2 was switched could be detected in the error signal ∆. The response was not

synchronized to either circuit in this case, but the ξt signal from the SWD circuit was

related to the output x'' of the ADF response circuit, so it contributed a finite component

to the error signal ∆. The ADF and SWD circuits were similar enough that the signal

from the wrong one could be detected in some cases. This does raise the question of how

different the chaotic systems must be to make signal separation possible. Some tolerance

to mismatch between drive and response circuits is necessary, but this tolerance also

allows the detection of signals from similar circuits. Improving the match between drive

and response circuits would allow the reduction of the mismatch tolerance, improving the

selectivity of the response circuit.

VII. Conclusions

The band stop filtering described here is only one example of a more general class

of transformations that may be applied to chaotic signals used for synchronization. Other

examples are given in [14]. Provided the response system remains stable, chaotic signals

used for synchronization may be transformed in a variety of ways, such as low, high or

band pass filtering, that may make them more useful for communications.

Signal separation was also demonstrated in this work. Filtering chaotic signals

allows the removal of spectral features that make signal separation difficult. In the band

stop filtering example, removing spectral features that both chaotic signals had in

common allowed their differences to be used in signal separation. This work is still at a

very preliminary stage; issues that must still be investigated include just how different the

chaotic signals must be to be separable, how much noise can be present, the effects of non

additive noise (such as multipath or phase noise), how to design the optimum filters and
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response circuits, and many other issues. In this simple study, filtered synchronized

chaotic signals do show some promise for broad band communications.

It has been noted [19] that signal masking using chaotic signals may be easy to

defeat. Short studied several types of nonchaotic signals buried in chaos and found that he

could reproduce the original chaotic signal and therefore recover the nonchaotic signal.

Making the nonchaotic signal smaller only made this easier, as it made reproducing the

chaotic signal easier. The one case where he could not separate the signals was when both

signals were chaotic. This suggests that signal masking may be more effective when a

sum of chaotic signals is used, as described in this work. In most other chaotic

communications methods, noise resistance, jamming resistance and unmasking resistance

have not been demonstrated.
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Figure Captions

Fig. 1. Block diagram of the filtering arrangement used with the ADF circuit.
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Fig. 2. Schematic of the band stop filters used with the ADF circuit. R0 is 100 kΩ,

C = 0.001 µF, and all other resistor values are given in table I.
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Fig. 3(a). Power spectrum S vs. frequency f for the x signal from the ADF circuit.

(b) Power spectrum of xt, the filtered signal that is transmitted between chaotic circuits.

Fig. 4. Attractor for the Augmented Duffing (ADF) circuit of eqs. (5-9).
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Fig. 5. Attractor for the ADF circuit when the offset A is set to 1.0 V
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Fig. 6(a). Output signal x'' from the response ADF circuit vs. x from the driving

circuit when the offset parameter A=0.0 V. (b). Output signal x'' from the response ADF

circuit vs. x from the driving circuit when the offset parameter A=1.0 V.
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Fig. 7. Offset parameter A in the drive ADF circuit and resulting error signal ∆

from the analog controller when A is switched between two values.
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Fig. 8. Power spectrum of ξt, the filtered signal from the SWD circuit that is used

as a contaminating signal.
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Fig. 9. Offset parameter A in the drive ADF circuit and resulting error signal ∆

from the analog controller when A is switched between two values while a contaminating

signal (ξt) is added to the transmitted xt signal.

Table I. Resistor values (Rij) for band pass filters.

j=1 j=2    j=3

i=1 204,000 Ω 408,000 Ω 1026 Ω

i=2 102,000 Ω 204,000 Ω 513 Ω

i=3 68,000 Ω 136,000 Ω 342 Ω

i=4 51,000 Ω 102,000 Ω 256 Ω

i=5 40,800 Ω 82,000 Ω 205 Ω
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Table I. Resistor values for bandpass filters.
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